If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-16k+64=9k^2
We move all terms to the left:
k^2-16k+64-(9k^2)=0
determiningTheFunctionDomain k^2-9k^2-16k+64=0
We add all the numbers together, and all the variables
-8k^2-16k+64=0
a = -8; b = -16; c = +64;
Δ = b2-4ac
Δ = -162-4·(-8)·64
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-48}{2*-8}=\frac{-32}{-16} =+2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+48}{2*-8}=\frac{64}{-16} =-4 $
| 46+2x=7x+-44 | | 8(2b-1)-5(2b+3)=-5 | | 2/5=r/35 | | 5.5x=-3.2x | | 8r+-32=7r+10 | | 37=-3x-6x+1 | | -3x=-|1-x| | | -(8n-2)=3+10(1-3n0 | | 146=6x+6x+2 | | 101=6x+2x+5 | | X^2+21x-7408=0 | | 5x+2/7=3x-6/5 | | 16x^2+32x-2=0 | | 5/4y^2+y=y^2 | | 7x^2-42x+5=0 | | 2(4+x)=-16 | | _.375x=12 | | 4x+2-6x=6 | | .375x=12 | | B=68b+11 | | 2/5x-11=15 | | 4.4-x=5.6 | | 4x-4+2x=62 | | x^2-12=7x+6 | | B=65b+4+3b+7 | | 39=7x+2x+3 | | 144+13m=326 | | x+7-3x=9-8x+5x | | 9.734+x^2=24.01 | | 27n-108=378 | | 3x+75/x=36 | | -5(2x-3)=20 |